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PHOTOELECTRON EMISSION SPECTROSCOPY OF INORGANIC CATIONS IN AQUEOUS SOLUTION

PAUL DELAHAY, KATHRIN von BURG and ANDREW DZIEDZIC

Department of Chemistry, New York University, 4 Washington Place, Room 514,

New York, NY 10003, U.S.A.

Threshold energies (6.1 < Et<* 8.6 eV) are determined for photoelectron

emission by 16 inorganic cations in aqueous solution. Et's are correlated

with gas-phase ionization potentials, solvation and reorganization free

energies, standard reduction potentials and ligand field stabilization

energies (five transition metals). Dielectric saturation is shown to

drastically lower threshold energies.

Threshold energies (ca. +0.1 eV) were recently obtained and interpreted

(1,2) for photoelectron emission by various inorganic anions in aqueous

solution. This work is extended to aqueous solutions of inorganic cations in

the present paper.

1. Determination of threshold energies

Yields for photoelectron emission by solutions into water vapor were

measured (1) as a function of photon energy (fig. 1). Anions with high

threshold energies were selected to avoid emission by anions In the range of

photon energies in which cations were Investigated. Complexatlon (31 of the

cation was avoided whenever possible. Hydrolysis [4] of the cation being

photolonized and/or its photolonization product was minimized by addition of

acid whenever necessary. Photoelectron emission by water I1 was totally

negligible.

Threshold energies for emission were obtained (1,] from emission spectra

by extrapolation on the basis of the Brodsky-Tsarevsky theory (5]. A plot of

the yield Y to the power 0.4 or 0.5 against photon energy is linear according

to this theory, and extrapolation to zero yield gives the threshold energy

V .
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Et. Selection of the proper exponent is discussed in (2] and 15] . The best

plots were obtained by least square treatment of data, and the proper choice

of exponent of Y was confirmed by calculation of correlation coefficients.

The proportionality between the yield and the cation concentration was

verified within % 10 percent for all cations (in general, 1, 0.5 and 0.2 M

solutions) at constant anion concentration. This procedure insured that

emission by the anion was negligible in the range of photon energies in which

the yield was proportional to the cation concentration.

Threshold energies Et are listed in Table 1. The slight variation of

Et from one anion to another for a given cation is essentially within

experimental error. The standard deviation was O..nl to 0.03 eV except for the

6 M acid solutions for which it was 0.06 to 0.08 eV because of a low signal

(presumably because of scavenging of electrons by hydrogen ions). The effect

of scavenging was also observed with reducible cations and is being

investigated. Et increased by 0.5 to 1 eV (vs. neutral solution) by

addition of acid (> 2 M) for Mn, Co2+, Ni2+. Addition of an alkali

metal salt of the acid (3, 2 14), instead of the acid, did not cause Et to

increase significantly. Et for the acid was higher than for the alkali

metal salt of the same anion as the acid, e.g., 9.08 eV for 6 M HCl vs. 8.77

eV for Cl" in neutral solution (presumably because of removal of low-energy

electrons by scavenging). This increase in Et for Cf" in 6 M HC1, for

instance, allowed the determination of Et * 8.60 eV for Co without

interference by the anion.

2. Threshold energy, ionization potential, reorganization.and solvation free

energies

The free energy for photoelectron emission by a aqueous solution of

cation 14z+(aq) will be correlated with the free energy for gas-phase

Ionization of MNz(g). The reference level of free energies must be changed

. . . ... ...-
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for that purpose. The problem is discussed in detail by Noyes (7,81, and only

essential points will be mentioned. The surface potential at the solution-

water vapor interface (P 0.1 to 0.2 V for water (g) is neglected here.

Free energies must be changed from their conventional values (i.e., In

tables (10]) to the reference level of an electron in the gas phase at

infinity at the same outer potential [11 as the solution. Consider the

reactions,

Mz*(aq) + e (aq) a M(z+) (aq) + 2(g) (1)

H H2(g) - H (aq) + e'(g) (2)

MZ+(aq) . 1(z+1) (aq) + e'(g). (3)

for which (g) and (aq) specify the gas phase and solution, respectively. The

free energies are (fig. 2): the conventional value A for (1); kGH - 4.50

eV [8] for (2); G + &G, for (3). Likewise, the conventional free

energies of solvation of Mz+(aq) and H(z+l) (aq) tGz and AGz+1
C C

are converted to AGsZ a AGcZ + z 4GH and AGsZB l a AGc5 +1 + (z+c) AGM,

respectively.

Photoinization of Mz+(aq) yields initially the species M(z+ )+(aq*)

under conditions governed by the Franck-Condon principle. The solvent about

this ion undergoes reorganization to yield the ion M(Z+1)+(aq) in a process

characterized by the reorganization free energy 462+1,

Two basic equations follow from fig. 2:

AGi(g) AG - C5 z+l +~ AG + AS (4)

A(a) Araz(g) +Az1-AGz - t3z+l (5)

where AGz(aq) and AGz(g) are,. respectively, the free energies for

photoelectron emission by the solution and gas-phase ionization. A third

equation follows from fig. 2 or can be obtained by combination of (4) and (5),

I ~777iiL777
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AG.(aq) a AG+ hz aG4 (6)

One has aGz(aq) a E to a good approximation since measurements

yield free energies for photoelectron emission. 4Gz(g) can be

calculated from (4), e.g., 29.81 and 30.51 eV, respectively, for Cr2+  and

Fe2+  (data from Table 1). The necessary AGz+l, however, is generally

not available and therefore we shall use ionization potentials Iz  instead

of AGZ(g) in sec. 3. The 1 Z's are enthalpies, but we set QGz(g)

Iz and thus neglect a minor entropy correction.

Reorganization free energies &Gz+I can be computed from (5), e.g.,

-2.05 and -2.11 eV, respectively, for Cr2+ and Fe2+ on the basis of the

AG2(g) calculated above from (4) for these two cations. Since AGi

* 45.04 and 44.87 eV for Cr3+ and Fe3+, respectively, one has IG31 << IAG3I

for Cr and Fe2 . Hence, the ion N(z+l)+(aq*) produced by vertical

transition in the phototonization of MZ+(aq) is energetically not very

different from M( Z+' )+ ( aq).

The orientation polarization of the solvent about M(Z1)+(aq*) is the

same as for MZ+(aq) (Franck-Condon principle). Conversely, the electronic

polarization of the solvent about M(z+L)+(aq*) is the same as for

M(z+l)+(aq) except for a secondary effect arising from the different

orientation polarizations for these two ions. Since the free energies of

4(z+l) (aq*) and M(z+l)+(aq) are quite close, as shown above, the

orientation polarization about Mzlaq)and M(z+l)Iaq)must not be very

different. This can be the case only if there is strong dielectric saturation

of the solvent about these ions.

The preceding conclusion is In complete agreement with Noyes 17,8] who

calculated effective dielectric constants from solvation free energies and

crystallographic radii by application of the Born equation. The resulting



effective dielectric constants (well below 10) indicated strong dielectric

saturation. It should be noted that the foregoing analysis, based on eq. (5)

does not involve the Born model of salvation.

3. Threshold energy and dielectric saturation

The calculation of iG z+ 1 in sec. 2 was restricted to Cr3+  andr
Fe3+ because of the lack of complete data for other cations. A method will

be developed in this section by which the essential role of dielectric

saturation will be established for all the cations of Table 1. The method

involves the Born model of salvation, but the approximation inherent to the

use of this model does not affect the conclusion to be drawn. Thus,z1 z1 z z+1
r+ 0 + Pe (P (7)

where Pz (> 0) is the orientation polarization about M(Z+l)+(aq*) and

Pol(Po) the corresponding electronic polarization (see above). A

very small correction (< 0.05 eV) is neglected in (7) for the change of

salvation free energy of an electrically neutral species 17] as the cavity

radius changes from the value for Po to that for P 1.
0 0

One has,

JAG < Po + Pe (P) < * Gz4*, (8)

and consequently we set

pZ + P(z+l) z 9z
0 e (0) S (9)

where the coefficient 6 C> 1) Is to be determined from experimental data and

calculated from a model. Equation (5), (7) and (9) yield,

dG(aq) - Gz(g) + (a - 1) hGzS, (10)

The coefficient 0 can be calculated from the Born equation. Thus,

0 a E(zl)/z]2(1 1 - ,')1 + ({, -g 6-)/(1 . ), (11)

where i 0 s the optical dielectric constant of water and u its static

dielectric constant in the absence of dielectric saturation. One computes
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from (11), a - 2.33, 1.55, 1.34 for z • 1, 2, 3, respectively, in the absence

of dielectric saturation (c - 78.36). Conversely, one has 3 I(z+l)/z ]j

for complete saturation (c so), that is, 0 a 4, 2.25, 1.78,' respectively,

for za 1, 2, 3.

Values of a calculated from (10) with AGz(g) - Iz (see above) are

listed in Table 1. The ionization potentials Iz  (from (4] except for Cr2+

and Fe3+ (6]) are more recent and in some cases slightly different from

those used by Noyes (from (10]) in the calculation of conventional solvation

free energies. This minor inconsistency is of no consequence in the

interpretation of S. The $-values of Table 1 are close to those calculated

from (11) for complete dielectric saturation. Equation (11) is approximate

(Born model), and partial hydrolysis and/or complexation may cause S to be

higher than expected for the ionic charge z+. Moreover, the value of S is

not very sensitive to AGZ(aq). Despite these reservations, one can

safely conclude that there is strong dielectric saturation of water about the

cations of Table 1. Reorganization free energies would be much higher in the

absence of dielectric saturation, and the threshold energies of cations in

aqueous solution are drastically lowered by strong dielectric saturation of

the solvent about the cations.

4. Threshold energy, standard potential and reorganization free enerQy

The free energy aG in (6) pertains to reaction (1) which is written as an

oxidation. Hence, aG a IeE 0 (in eV) where E°  is the standard reduction

potential for the MZ l(aq)/M?+(aq) couple. Equation (6) becomes (in eV)

AG(aq) a of e0 + 4.S -AGz 4, (12)

where 4G% * 4.50 *V was introduced (sec. 2). The free energy (ca. 0.1 to

0.2 eV [9]) for the surface potential should be added on the right hand side

of (12).

~~.
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Equation (12) clearly shows the relationship between the free energies

AGz(aq) and AG for photoelectron emission and thermodynamics in the

oxidation of MZ+(aq) to Mz+l(aq). &GH  arises from the change of
.Z+I

reference levels for free energies, and - f&rG is the additional free

energy required by the Franck-Condon principle. The negative of the

reorganization free energy can be regarded as the counterpart of the

overvoltage in the electrochemical oxidation of MZ+(aq).

Reorganization free energies calculated from (12) are nearly the same

(-2.05 to -2.25 eV). for the five cations of fig. 3 (E°'s from (4 3, £12 1).

Since G3  is nearly constant, a plot of Et against le I E°  (2,131 is

linear, to a first approximation, and has a unit slope (fig. 3). Standard

reduction potentials can be deduced from such a plot and Et (for chemically

similar cations) for species that are unstable in aqueous solution, e.g.,

Eo; 1.75 V for N3+/Ni 2+ in 6 M HCI (using &Gr a -2.1 eV).

S. Threshold energy, ionization potential and ligand field stabilization

energies (LFSE)

The M2+(aq) and M3+(aq) ions of V, Cr, Mn, Fe, Co exist as hexaquo

ions [4 G. GZ(aq) therefore include the difference &Ef between the

LFSE's for M3+(aq) and M2+(aq) ions in an octahedral field. 12 for

these metals obviously does not include AEf. Hence the correlation between

12 and Et is partially masked (for Cr, in particular, fig. 4) by the LFSE

effect. The correlation, however, is evident when 12 and Et + AEf are

compared. Thus, 12 - (Et + AE) and G2 _ " + G3 AE (cf.ts s r A f (f
eq. (5)) are nearly constant from V to Co whereas 12 - Et is not.
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Table 1

Threshold energies, coefficient 0 and relevant data

E "  z 4,61 - G B
t S

eV eV eV

Ag+  7.60 (Cl04), 7.52 (C104, 5 M HCLO4) 21.48 4.95 3.80

T1+  7.40 (F-), 7.46 (C10, 5 H HC1O4) 20.42 3.55 4.67

V2+  6.38 (S02, 1 M H2SO4) 29.31 19.14 2.20

Cr2+  6.14 (C1", 1 H HCl) 30.95 19.32 2.28

Mn2+  8.08 (C1", 2 M HCI) 33.70 18.96 2.35

Fe2+  7.35 (C1", 1 H HC1), 7.38 (S02) 30.64 19.63 2.18

Co2+  8.60 (C1", 6 H HCl) 33.49 20.88 2.19

N12+  8.35 (C1", 6 H HC1) 36.16 21.40 2.30

Cu2  7.83 (CI04, 1 M HC1O 4), 7.84 (S04) 36.74 21.55 2.34

Sn2  7.21 (C1-), 7.42 (CI04, 6 M HC10 4) 30.49 16.14 2.44

Pb2+  7.23 (C104), 7.10 (Cl04, 6 M HC1O4) 31.92 15.49 2.59

in3+  7.15 (Cl0-) 54.42 42.57 2.11

T13+  6.90 (C1") 43.25 42.01 1.87

V3  7.06 (C1") 47.7 44.2 1.92

Cr3+  7.33 (Cl"), 7.27 (S02) 50.8 45.04 1.97

Fe3+  7.03 (C1-), 7.05 (Cl-, 6 N HC104) 56.8 44.87 2.11

See sec. 1 for standard deviation, AS3 for V3+ calculated from (4)

z
with 1G - -0.25 eV (sec. 4).

I- .. __._. .......____,_____':



10

Captions to Figures

Fig. 1. Photoelectron emission spectra of Fe2+. (A) 1' M FeS04; (8) 0.5

M FeSO 4 + 0.5 M L12S04; (C) 0.2 4 FeSO4  + 0.8 M L12S04.

Photoelectron emission only by Fe2+  below the threshold energy

2-(Et a 8.65 eV) for S04

Fig. 2 Free energy diagram. Upward and downward arrows, respectively, for

positive and negative free energies. The superscrips z and z+1

denote the positive ionic charge. The symbols (g) and (aq) refer to

gas phase and solution, respectively. Free energies: AGZ(g),

AGZ+l(g), AGZ(aq), AGZ+1(aq) of ions; AG for reaction

(1); A G for (2); AGZ and AGzl conventional values
C c

for solvation; 4GZ 9 Gz values for solvation corrected
5' 5

for AH; AGz+1 reorganization; 4G(g) gas-phase ionization;

AGz(aq) photoelectron emission by -solution.

Fig. 3 Plot of threshold energy Et and reorganization free energy AGr 3

against el E° .  Standard reduction potentials E°  from 14,12]
~The E°'s for Mn3+/M2+  and Co3+/Co2+  are approximate (ca.

+0.05 V). The symbol M*3+ stands for M3+(aq*).

Fig. 4 Correlation between the ionization potential 12 and the threshold

:. energy Et corrected for the difference AEf between the LFSE's

for M3+ and M2 i in an octahedral field. Values of AEf from (141.

i _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - -

A
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